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Abstract 

Representation and identification of a nonlinear aeroelastic pitch-plunge system as 
a model of the Nonlinear AutoRegressive, Moving Average eXogenous (NARMAX) class 
is considered. A nonlinear difference equation describing this aircraft model is derived 
theoretically and shown to be of the NARMAX form. Identification methods for NARMAX 
models are applied to aeroelastic dynamics and its properties demonstrated via continuous-
time simulations of experimental conditions. Simulation results show that (1) the outputs 
of the NARMAX model closely match those generated using continuous-time methods, 
and (2) NARMAX identification methods applied to aeroelastic dynamics provide accurate 
discrete-time parameter estimates. Application of NARMAX identification to experimental 
pitch-plunge dynamics data gives a high percent fit for cross-validated data.

Nomenclature

a 			   nondimensional distance from midchord to elastic axis
b 			   semichord of the wing
c

h
			   plunge structural damping coefficient

c
l
α

			   lift coefficient per angle of attack
c

lβ
			   lift coefficient per control surface deflection

c
m
α

			   moment coefficient per angle of attack
c

mβ
			   moment coefficient per control surface deflection

c
α

			   pitch structural damping coefficient
e(n) 			   uncontrolled input or innovation
ELS			   extended least-squares
h 			   plunge motion
h 			   plunge velocity

IV			   instrumental variables
I
α

			   mass moment of inertia of the wing about the elastic axis
k

h
			   plunge structural spring constant

k
α

			   pitch structural spring constant
L 			   aerodynamic lift
LCO			   limit cycle oscillations
LTI			   linear time-invariant 
m 			   wing mass
M 			   aerodynamic moment
ML			   maximum likelihood
n 			   sampled data point index



�

n
e

			   maximum error lag
n

u
			   maximum input lag

n
z

			   maximum output lag
N 			   record length
N

v
			   validation record length

NARMAX		  Nonlinear AutoRegressive, Moving Average eXogenous
PEI			   prediction error identification
SNR			   signal-to-noise ratio, dB
STD			   standard deviation
T 			   sample time
u 			   controlled or exogenous input
U 			   free-stream velocity
WLS			   weighted least-squares
x
α

			   nondimensional distance between elastic axis and center of mass
y(n) 			   output of the continuous time simulation
ŷ(n) 			   simulated output
z 			   measured output
%QF 			   percent quality of fit
ƒ

l 			   nonlinear mapping
α 			   pitch angle
α 			   pitch velocity
α 			   pitch acceleration
β 			   control surface deflection
δ(n) 			   Kronecker impulse function
ρ 			   density of air

 Introduction 

System identification, or mathematical modeling, is the process of developing or 
improving a mathematical representation of a physical system based on observed data. 
System identification is a critical step in aircraft development, analysis, and validation for 
flight worthiness.

One such application of system identification in the flight-test community is for the 
analysis of aeroelasticity. The analysis of aeroelasticity is concerned with the interaction 
of inertial, structural, and aerodynamic forces (ref. 1). Previous approaches have 
modeled aeroelasticity with linear time-invariant (LTI) models. These linear models have 
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been successful in providing approximate estimates of an aircraft’s response to gust, 
turbulence, and external excitations. However, when aircraft speeds increase to high 
subsonic or transonic Mach numbers, linear models no longer provide accurate predictions 
of the aircraft’s behavior. Some of the behavior that cannot be modeled linearly includes 
transonic dip, airflow separation, and shock oscillations, which can induce nonlinear 
phenomena such as limit cycle oscillations (LCO) (refs. 2 and 3). The onset of LCOs has 
been observed on several aircraft, such as the F-16C (Lockheed Martin Corporation, 
Bethesda, Maryland) or F/A-18 (McDonnell Douglas Corporation, St. Louis, Missouri, 
now The Boeing Company, Chicago, Illinois), and cannot be modeled properly as an LTI 
system (ref. 4). This limitation has necessitated the application of nonlinear identification 
techniques to accurately model LCO dynamics.

Over the past several decades, significant achievements have been made in several 
areas of nonparametric nonlinear system identification (e.g., refs. 5–7). Recent work in the 
aerospace community has attempted to address these nonlinear aeroelastic phenomena 
using Volterra kernel methods (ref. 8). These methods provide a convenient means of 
characterizing LCOs but suffer from a highly over-parameterized model description and 
do not lend themselves to efficient control synthesis.

Parametric representations of nonlinear systems typically contain a small number 
of coefficients that can be varied to alter the behavior of the equation and may be linked 
to the underlying system. Leontaritis and Billings (refs. 9 and 10) have proposed the 
Nonlinear AutoRegressive, Moving Average eXogenous (NARMAX) structure as a general 
parametric form for modeling nonlinear systems. NARMAX models describe nonlinear 
systems in terms of linear-in-the-parameters difference equations relating the current 
output to (possibly nonlinear) combinations of inputs and past outputs. It is suitable for 
modeling both the stochastic and deterministic components of a system and is capable 
of describing a wide variety of nonlinear systems (refs. 11 and 12). This formulation 
yields compact model descriptions that may be readily identified and may afford greater 
interpretability. NARMAX models have been successfully demonstrated for modeling the 
input-output behavior of many complex systems such as ones found in engineering and 
biology (refs. 13 and 14).

Currently, development and test of aircraft takes many years and considerable 
expenditure of limited resources. One reason for lengthy development time and costs 
is that many models (and hence control strategies) need to be developed throughout 
the flight envelope. The power of parametric nonlinear identification techniques (i.e., 
NARMAX models) is that they can describe complex aeroelastic behavior over a large 
operating range. Consequently, models are provided that can be more robust and reduce 
development time.

Although the NARMAX structure is well-suited to modeling the input-output behavior 
of an aeroelastic system, this method has not been investigated by the flight-test 
community to date. Therefore, the objectives of this report are to (1) theoretically analyze 
a nonlinear pitch-plunge model of aircraft dynamics to derive its NARMAX representation, 



�

(2) assess the applicability of this nonlinear model for the identification of aerospace 
systems, and (3) investigate the suitability of NARMAX identification methods applied to 
aircraft dynamics.

The results show that the NARMAX model class provides an ideal framework for 
modeling the input-output behavior of a nonlinear pitch-plunge model describing aircraft 
dynamics. Identification results illustrate that methods for identification of NARMAX 
models are well-suited for identifying aircraft dynamics. Analysis of experimental data 
using NARMAX identification techniques provides a parameter set that explains the 
input-output data well. Overall, this report contributes to the understanding of the use of 
parametric identification techniques for modeling of aerospace systems.

The organization of this report is as follows. The NARMAX model structure is described 
in the section titled “NARMAX Model.” In the section titled “Nonlinear Pitch-Plunge Model 
of Aircraft Dynamics,” a continuous-time representation of a nonlinear pitch-plunge model 
describing aircraft dynamics is given, while its NARMAX representation is derived in the 
section titled “Theoretical Analysis.” The section titled “Validation of NARMAX Pitch-
Plunge Model” illustrates the results of simulating this NARMAX representation of pitch-
plunge dynamics. In the section titled “NARMAX Identification of Pitch-Plunge Model,” 
the applicability of NARMAX identification to this model representation via simulations 
of experimental condition is assessed. The section titled “Identification of Experimental 
Pitch-Plunge Data” presents the results of identifying experimental wind tunnel data, and 
the “Discussion” section provides a discussion of the major finds. Lastly, conclusions and 
significance of the results are given in the “Conclusion” section.

NARMAX Model 

The NARMAX structure is a general parametric form for modeling nonlinear systems 
(ref. 9). This structure describes both the stochastic and deterministic components of 
nonlinear systems. Many nonlinear systems are a special case of the general NARMAX 
structure (ref. 12). The NARMAX structure models the input-output relationship as a 
nonlinear difference equation of the form shown in equation (1):

z(n) = ƒ
l

z(n −1),,z n − n
z( ),u(n),,u n − n

u( ),e(n −1),,e n − n
e( )⎡

⎣
⎤
⎦ + e(n) (1)

ƒ
l denotes a nonlinear mapping; u  is the controlled or exogenous input; z  is the measured 

output; and e  is the uncontrolled input or innovation. The nonlinear mapping, ƒ l , can be 
described by a wide variety of nonlinear functions such as a tanh(·) or splines (i.e., hard 
nonlinearities) (refs. 11 and 12). For simplicity, nonlinearities are only considered that can 
be described by a polynomial expansion. This class of nonlinear difference equations 
describes the dynamic behavior of a system as a linear and/or nonlinear expansion of 
the input, output, and error. These equations may include a variety of nonlinear terms, 
such as terms raised to an integer power (e.g., u

3(n − 5) ); products of present and 
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past inputs (e.g., u(n)u(n − 3) ); past outputs (e.g., z
2(n − 2)z(n − 7) ); or cross-terms  

(e.g., u(n − 3)z2(n − 4) ). This system description encompasses many forms of nonlinear 
difference equations that are linear-in-the-parameters. Thus, there are no problems with 
local minima.

Nonlinear Pitch-Plunge Model of Aircraft Dynamics 

O’Neil et al. (refs. 15 and 16) developed a nonlinear pitch-plunge model (fig. 1) 
describing aircraft aeroelastic dynamics. Figure 1 characterizes aeroelastic wing dynamics 
for experiments performed on the Texas A&M University (College Station, Texas) testbed 
(ref. 16). This model provides a relationship between control surface deflection as input, 
and pitch-plunge displacement and velocity as outputs, of a single-input multiple-output 
nonlinearity followed by a simple integrator. 

The model presented in figure 1 has been derived from the governing equations of 
motion for aeroelastic systems, as shown in equation (2):

m mxαb

mxαb Iα

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

h

α

⎡

⎣
⎢

⎤

⎦
⎥ +

c
h

0

0 cα

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

h

α

⎡

⎣
⎢

⎤

⎦
⎥ +

k
h

0

0 kα (α)

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

h

α

⎡

⎣
⎢

⎤

⎦
⎥ =

−L

M

⎡

⎣
⎢

⎤

⎦
⎥ (2)

where h  denotes plunge motion; α  is the pitch angle; x
α  is the nondimensional distance 

between elastic axis and center of mass; m  is the wing mass; I
α  is the mass moment 

of inertia of the wing about the elastic axis; b  is the semichord of the wing; c
h  and c

α  
are the plunge and pitch structural damping coefficients, respectively; k

h  and k
α  are 

the plunge and pitch structural spring constants, respectively; and L  and M  are the 
aerodynamic lift and moment, respectively.



�

β

••

•

•

•

•

h

h

h

h
••

h
•

h h

h

β

β

α

α

α

α

α

••α •α α

080312

1
s

1
s

1
s

1
sf l(•)

••
f l(•)

Figure 1. System structure assumed for modeling and identification of pitch-plunge 
aeroelastic dynamics.

Typically, quasi-steady aerodynamic forces and moments are assumed which can 
be modeled, as shown in equation (3):

L = ρU
2
bc

lα
α +

h

U
+

1

2
− a

⎛
⎝⎜

⎞
⎠⎟

b
α

U

⎡

⎣
⎢

⎤

⎦
⎥ + ρU

2
bc

lβ
β

M = ρU
2
b

2
c

mα
α +

h

U
+

1

2
− a

⎛
⎝⎜

⎞
⎠⎟

b
α

U

⎡

⎣
⎢

⎤

⎦
⎥ + ρU

2
b

2
c

mβ
β

(3)

where ρ  denotes density of air; U  is the free-stream velocity; c
m
α

 and c
l
α

 are the 

moment and lift coefficients per angle of attack, respectively; c
mβ

 and c
lβ

 are the 

moment and lift coefficients per control surface deflection, respectively; β  is the control 
surface deflection; and a  is the nondimensional distance from midchord to elastic axis.

Although several classes of nonlinear mappings for stiffness contributions, k
α

(α) , 
have been investigated for open loop dynamics of aeroelastic systems (refs. 17–20), the 
work of O’Neil et al. (refs. 15 and 16) demonstrated that a polynomial mapping of the form 
shown in equation (4) describes the behavior of this testbed well:

k
α

(α) = k
α0

+ k
α1
α + k

α2
α

2
+ k

α3
α

3
+ k

α4
α

4 (4)
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Equations of motion are derived by combining equations (2) and (3) to yield 
equation (5):

m mxαb

mxαb Iα

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

h

α

⎡

⎣
⎢

⎤

⎦
⎥ +

c
h

+ ρUbc
lα

ρUb
2
c

lα

1

2
− a

⎛
⎝⎜

⎞
⎠⎟

ρUb
2
c

mα
cα − ρUb

3
c

mα

1

2
− a

⎛
⎝⎜

⎞
⎠⎟
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⎣

⎢
⎢
⎢
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⎤

⎦

⎥
⎥
⎥
⎥
⎥

h

α

⎡

⎣
⎢

⎤

⎦
⎥

+

k
h

ρU
2
bc

lα

0 −ρU
2
b

2
c

mα
+ kα (α)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

h

α

⎡

⎣
⎢

⎤

⎦
⎥ =

−ρbc
lβ

ρb
2
c

mβ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

U
2β

 (5)

The model form presented in figure 1 is derived by transforming equation (5) to give 
equation (6):

x = fµ (x) + g(x)µβ (6)

where x = x
1

x
2

x
3

x
4

⎡⎣ ⎤⎦
T

= hα h α⎡⎣ ⎤⎦
T

; µ =U
2 ; and fµ  and g(x)  are as given in 

equation (7):

fµ =

x3

x4

−k1x1− k2µ + p x2( )( ) x2 − c1x3 − c2x4

−k3x1− k4µ + q x2( )( ) x2 − c3x3 − c4x4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

,g(x) =

0

0

g3

g4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

(7)

The supplementary variables ki , i = 1, 2, 3, 4, and g j , j = 3, 4, are provided in table 1 in 
relationship to the aeroelastic parameters given in equations (2) and (3).
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Table 1. Supplementary system variables.
Supplementary variable Relationship to system parameters

d m I
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Transformation of equation (5) to equation (6) and introduction of supplementary 
variables (table 1) provides the simple model description presented in figure 1. The 
nonlinear mappings for this model description are given as equations (8) and (9): 

ƒ
a
l (⋅) = −k3h(n) k4µ

m

d
kα0

+ kα1
α + kα2

α2 + kα3
α3 + kα4

α4( )⎡

⎣
⎢

⎤

⎦
⎥α(n) − c3

h(n)

− c4
α(n) + g4µU(n)

= −b1h(n) − b2α(n) + b3α
2(n) + b4α

3(n) + b5α
4(n) + b6α

5(n)⎡
⎣⎢

⎤
⎦⎥
− b7
h(n)

− b8
α(n) + b9U(n)

= α(n)

(8)

ƒ
h

l (⋅) = −k1h(n) − k2µ +
−mxαb

d
kα0

+ kα1
α + kα2

α2 + kα3
α3 + kα4

α4( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
α(n)

− c1
h(n) − c2

α(n) + g3µU(n)

= −a1h(n) − a2α(n) + a3α
2(n) + a4α

3(n) + a5α
4(n) + a6α

5(n)⎡
⎣⎢

⎤
⎦⎥
− a7
h(n)

− a8
α(n) + a9U(n)

= h(n)

(9)

Note that this system (fig. 1) can be described in terms of pitch-plunge displacement or 
velocity. Here, pitch-plunge is chosen in terms of velocity because (1) it offers a model 
description with lower dynamic order, and (2) velocity feedback models are often used for 
vibration suppression.

Discrete-Domain Approximations 

Many methods exist for discretization of continuous-time systems and signals. Most 
commonly used are Euler’s forward, Euler’s backward, or Tustin’s method (also known 
as the bilinear transformation method) (refs. 21 and 22). Each has its advantages as 
well as disadvantages. While Tustin’s and Euler’s backward methods provide a superior 
approximation to a continuous-time signal, the goal in system identification is not (directly) 
signal reproduction but model estimation.

Tustin’s method provides excellent signal estimation, but its use for modeling a pure 
integrator yields system descriptions that can be overly complex (e.g., redundant terms). 
Euler’s backward method also provides good signal estimation but provides a model that 
is not intuitive. Models based on this approximation would include the current output as 
one of the model terms, leading to an algebraic loop. Although Euler’s forward method 
is well-known to be unstable, this is only true if the sampling rate is not sufficiently large. 
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For identification purposes this does not pose a concern since the signals need to be 
sampled at least twice Nyquist and, hence, stability is achieved. Generally, the rule of 
thumb is to sample a signal at least 4 to 10 times the highest known (or suspected) 
system dynamics (ref. 23). For the pitch-plunge system under investigation, Euler’s 
forward method provides a model description that is both stable and intuitive. Moreover, 
all three methods converge to similar accuracies for sufficiently large sampling rates. For 
these reasons Euler’s forward method is chosen to model the system dynamics.

Theoretical Analysis 

The pitch-plunge model is given in continuous-time. This section shows how the 
model can be converted to discrete-time and rewritten as a NARMAX model. To do so, 
note that the two nonlinearities can be decoupled and analyzed separately since they 
yield two separate model descriptions for pitch and plunge velocity.

Euler’s forward (explicit) method (ref. 21), as shown in equation (10)

1

s
= x(0)+ x(t)dt ≈ x(n −1) +Tx(n −1)

0

t

∫ (10)

where T  is the sample time, was used to approximate the continuous-time integrator, 
where x  is replaced by α  and h  for pitch and plunge, respectively.

The nonlinearities used for this analysis, to derive an input-output model of pitch 
and plunge, were given in equations (8) and (9). In addition, the models are assumed 
corrupted by output additive (measurement) noise, as shown in equation (11):

α(n) = α
nƒ

(n) + e
α
(n)

h(n) = h
nƒ

(n) + e h
(n)

(11)

where α(n)  and h(n)  are the noise-corrupted outputs, α
nƒ (n)  and h

nƒ (n)  are the 
unmeasured noise-free outputs, and e

α
(n)  and e h(n)  are the measurement noise.

After collecting and combining terms, the overall nonlinear models were represented 
as nonlinear difference equations with 10 terms each, as shown in equation (12):
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α(n) = γ1
α(n −1) + γ 2h(n −1) + γ 3α(n −1) + γ 4α(n −1)2 + γ 5α(n −1)3

+γ 6α(n −1)4 + γ 7α(n −1)5 + γ 8
h(n −1) + γ 9u(n −1) + γ10e

α (n −1) + e
α (n)

h(n) = θ1
h(n −1) +θ2h(n −1) +θ3α(n −1) +θ4α(n −1)2 +θ5α(n −1)3

+θ6α(n −1)4 +θ7α(n −1)5 +θ8
α(n −1) +θ9u(n −1) +θ10e h

(n −1) + e h
(n)

(12)

These are NARMAX models since they (1) include input-output terms that are combinations 
of linear and nonlinear integer powers and (2) are linear-in-the-parameters. Table 2 shows 
the relationship of discrete-time NARMAX parameters in equation (12) to the underlying 
continuous-time coefficients.

Table 2. Theoretical relationship of NARMAX model parameter set to continuous-time 
system coefficients.

NARMAX
plunge

coefficient

Relationship to
continuous-

time coefficient

NARMAX
pitch

coefficient

Relationship to
continuous-

time coefficient

θ
1

1−Ta
7

γ
1

1−Tb
8

θ
2

Ta
1 γ

2
Tb

1

θ
3

Ta
2 γ

3
Tb

2

θ
4

Ta
3 γ

4
Tb

3

θ
5

Ta
4 γ

5
Tb

4

θ
6

Ta
5 γ

6
Tb

5

θ
7

Ta
6 γ

7
Tb

6

θ
8

Ta
8 γ

8
Tb

7

θ
9

Ta
9 γ

9
Tb

9

θ
10 − 1−Ta

7( ) γ
10 − 1−Tb

8( )
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Validation of NARMAX Pitch-Plunge Model 

The accuracy of this system representation was validated by simulating the pitch-
plunge model in continuous-time using Simulink® (The MathWorks, Natick, Massachusetts) 
(fig. 1). The nonlinearities used in this continuous-time simulation were the fifth-order 
power series described in equations (8) and (9). The parameters used in the simulation 
were typical values found in experiments and are given in table 3 (ref. 15). The system 
was excited using a 5-Hz chirp input.

Table 3. Continuous-time system coefficients.

CT coefficient Value
b 0.135 m

span 0.600 m
k

h 2844.4 N/m

c
h 27.43 N s/m

ρ 1,225 kg/m3

c
l
α 6.28/rad

c
lβ 3.358/rad

c
m
α

(0.5 + a)c
l
α

/ rad

c
mβ -0.635/rad

Output Accuracy 

To determine the validity of this NARMAX description model provided in equation (12), 
its response is simulated for a parameter set corresponding to those used for the 
continuous-time model. The input sequence was a 5-Hz chirp with a signal duration of 
30 s. The chirp input had an operating range between ±1.0 rad, as shown in figure 2(a).

Using a fifth-order nonlinearity, the frequency content of the signal at the output of 
the nonlinearity will be at least 25 Hz (5 times the 5-Hz chirp signal). To avoid internal 
aliasing, a sampling rate of 100 Hz ( T =  0.01 s) is selected, which is 4 times greater than 
the internal 25-Hz signal.
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The simulated output, ŷ(n) , of the NARMAX description model was compared with 
the output of the continuous-time simulation, y(n) , by computing the percent variance 
accounted for by the NARMAX model as the percent quality of fit (%QF) provided in 
equation (13):

%QF = 1−

1

N
(y(n) − ŷ(n))2

n=1

N∑
1

N
(y(n))2

n=1

N∑

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
×100 (13)

where N  is the record length.

Simulation Result 

The results of simulating the pitch-plunge model in continuous-time against the 
discrete-time NARMAX predictions are provided in figure 2. Figure 2 shows the simulation 
input (fig. 2(a)) and predicted velocity outputs of the NARMAX description models 
superimposed on top of the continuous-time outputs of the pitch (fig. 2(b)) and plunge 
(fig. 2(c)) velocity models. With over 99 %QF, the NARMAX outputs matched that of the 
continuous-time simulation with negligible error.
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(a). Control surface deflection.

Figure 2. (a). Input to simulated pitch-plunge model in continuous-time and NARMAX 
description model; (b) and (c). Output of simulated pitch-plunge velocity model in 
continuous-time and NARMAX description model. Note that the two outputs are almost 
identical.
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Figure 2. Concluded.

NARMAX Identification of Pitch-Plunge Model 

The utility of methods developed for identifying NARMAX models using sampled 
data from this continuous-time simulation were then assessed. An extended least-squares 
(ELS) algorithm (refs. 24–26) was used to identify model parameters.

The NARMAX description of the pitch-plunge velocity models (eq. (12)) is described 
by past outputs that are linear-in-the-parameters. In the presence of output additive noise 
(eqs. (11) and (12)), these terms result in lagged values of disturbance terms that are 
also linear-in-the-parameters. If these lagged errors are not modeled, they induce a bias 
in the parameter estimates (refs. 22, 27, and 28). The ELS algorithm was implemented 
because it is designed to model lagged-error terms thereby providing unbiased parameter 
estimates.

The fact that ELS may suffer from convergence problems (refs. 22, 29, and 30) is 
well-known. However, no prediction error identification (PEI) method is optimal. For the 
pitch-plunge velocity models, ELS is deemed the best estimation technique because it 
provides an unbiased estimate of model parameters (ref. 22). Other estimation techniques 
such as maximum likelihood (ML), instrumental variables (IV), weighted least-squares 
(WLS), etc., are difficult to implement and also have convergence problems (refs. 22, 30, 
and 31). For this reason ELS is chosen.
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Analysis of NARMAX Model Parameters 

A Monte Carlo study of these NARMAX parameters (eq. (12) and table 2) was 
performed to assess their accuracy and variability using the ELS estimator. One thousand 
Monte Carlo simulations were generated in which the input-output realization was the 
same but had a unique Gaussian, white, zero-mean, noise sequence added to the output. 
The output additive noise amplitude was increased in increments of 5 dB, from 20 to 
0 dB signal-to-noise ratio (SNR). Parameter mean and standard deviation was computed 
from the 1000 estimates. The input used for this study was the same 5‑Hz chirp signal 
previously described in the section titled “Output Accuracy.”

For this study, the system order and structure were assumed to be known with the 
coefficient set in equation (12) and tables 2 and 3. The regressor matrix used by this 
algorithm was formed to contain only those columns (parameters) that corresponded to 
the theoretical analysis (eq. (12)). A reasonable assumption is made that the order and 
structure are known because the goal is to identify a model in the model class described 
by equation (12).

In experimental settings, often only pitch-plunge displacement and/or acceleration 
signals are available. For a velocity model description, the velocity signal is required for 
identification. Therefore, pitch-plunge acceleration signals are numerically integrated to 
obtain a velocity profile. The estimation set consisted of N =  3000 data points sampled at 
T =  0.01 s. The estimated parameters were cross-validated with a fresh noise-corrupted 
output to compute the %QF of the predicted pitch and plunge velocity. The validation set 
consisted of N

v
=  3000 data points (refs. 22 and 32).

Identification Results of Simulated Model 

Figure 3 shows the results of identifying this simulated model of pitch-plunge. The 
NARMAX parameters in this figure correspond to those given in table 2. This figure shows 
that the identified parameter values corresponded closely to those derived theoretically 
for all SNRs. Note that the mean value of parameters γ

10
 and θ

10
 is not expected to be 

close to the theoretically computed value since they correspond to lagged-error terms. 
Lagged-error terms are difficult to identify accurately, even with high SNR, since the 
terms model the output additive noise, which is an unmeasurable stochastic process. 
This stochastic process is modeled (approximated) by a deterministic signal of prediction 
errors, which is only an (poor) estimate of the noise (refs. 22 and 28). 
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Figure 3. Monte Carlo study of pitch-plunge NARMAX model parameters. 5-Hz chirp input, 
Gaussian, white, zero-mean noise and N =  3000. Ordinate: STD about mean. Abscissa: 
Output SNR = 20, 15, 10, 5 and 0 dB. (Note that the abscissa is shown in decreasing 
SNR, which corresponds to increasing noise intensity.)

Figure 4 presents a result of cross-validation for a typical parameter set for this 
study. Figures 4(a) and 4(b) show a noise-corrupted output used for identification, and 
figures 4(c) and 4(d) show a predicted output superimposed on top of the noise-free 
output. The predicted output matched the measured output with over 98 %QF.
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Figure 4. Cross-validation for typical identified NARMAX pitch (left) and plunge (right) 
models with N

v
=  3000 and Gaussian, white, zero-mean output additive noise (0 dB 

SNR). Top panels: Measured outputs used for estimation. Bottom panels: Predicted 
output superimposed on top of noise-free output.

Identification of Experimental Pitch-Plunge Data 

Lastly, the identification technique is assessed on experimental wing section data 
collected in the wind tunnel at the Department of Aerospace Engineering at Texas A&M 
University by the Aeroelasticity Research Group. The data analyzed for this study does 
not contain a flap control input but instead had an initial condition associated with plunge 
displacement. Data with a control input was unavailable for analysis.

The velocity model descriptions given in equation (12) are in terms of a control input 
and zero initial conditions. For the present study the model was modified to reflect a lack 
of exogenous input and the presence of an initial condition. Equation (12) is reformulated 
as equation (14): 
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h(n) = θ1
h(n −1) +θ2h(n −1) +θ3α(n −1) +θ4α(n −1)2 +θ5α(n −1)3

+θ6α(n −1)4 +θ7α(n −1)5 +θ8
α(n −1) +θ9δ(n)+θ10e h

(n −1) + e h
(n)

α(n) = γ1
α(n −1) + γ 2h(n −1) + γ 3α(n −1) + γ 4α(n −1)2 + γ 5α(n −1)3

+γ 6α(n −1)4 + γ 7α(n −1)5 + γ 8
h(n −1) + γ 9e

α (n −1) + e
α (n)

(14)

where δ(n)  is the Kronecker impulse function used to represent the onset of a plunge 
initial condition in discrete-time. Note that this model description can also be modified 
for use in analysis of data that contains both an initial condition and exogenous input by 
simply including a Kronecker impulse function in equation (12) or excluding both (time-
series analysis) by removing the exogenous input term.

Apparatus 

Data was collected on a unique wind tunnel test apparatus at the Department of 
Aerospace Engineering at Texas A&M University. This 2-ft by 3-ft closed-circuit low-speed 
wind tunnel allows a wing section to move in two degrees-of-freedom and can translate 
(plunge) and rotate (pitch). This apparatus allows the study of classical bending-torsion 
flutter. Structural response of the system is governed by springs attached to cams. 
Stiffness of the springs and the shape of the cams can be altered to prescribe a wide 
variety of linear and nonlinear structural responses.

Procedures 

The pitch acceleration was measured by a linear accelerometer, which measured 
accelerations along one axis. The accelerometer was mounted 0.157 m from the rotational 
axis and orthogonal to the y-direction (forward-aft) when the airfoil was at a zero angle of 
attack, giving no acceleration in the y-direction. However, a small portion of the plunge 
acceleration was detected when the airfoil was deflected. The elastic axis was three-
tenths of the chord length forward of the midchord.

The free-stream velocity was increased in increments of 2 m/s from 4 to 22 m/s. 
Aeroelastic responses were recorded for 45 s while the free-stream velocity was held 
constant. Flutter was observed to be induced at about 13.5 m/s. Pitch and plunge 
displacements and accelerations of this aeroelastic system were sampled at 525 Hz.

After recording, the experimental data was decimated by a factor of 2, resulting in a 
final sampling rate of 262.5 Hz. The system was identified using the NARMAX approach, 
as outlined in the section titled “Analysis of NARMAX Model Parameters,” except that  
N =15,600 points was used for estimation and N

v
= 7800 points was used for 

validation.
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Results 

The results of identifying 10 trials of wing section experiments are presented. 
Figures 5(a) and 5(b) show a typical pitch-plunge displacement and velocity trial used for 
this analysis. The data represents pitch and plunge displacement and velocity sequences 
while the free-stream velocity in the wind tunnel was held constant at 16 m/s. The 
characteristics of this trial are consistent with those reported in previous work (ref. 33). The 
lower panels of figures 5(c) and 5(d) display a 5-s slice of the cross-validation (predicted) 
outputs superimposed on top of the measured outputs for this trial. The predicted outputs 
matched the measured outputs with over 98 %QF.

Figure 6 shows the cross-validation %QF for each trial. The results show that the 
predicted outputs, for these parameter estimates, account for a large portion of the 
variance. For pitch velocity, the range of %QF is from a minimum of 99.73 percent to a 
maximum of 99.98 percent. For plunge velocity, the range of %QF is from a minimum of 
98.09 percent to a maximum of 99.83 percent. From the 10 trials examined for this study, 
80 percent of predicted outputs accounted for more than 99 %QF of the measured output 
for both pitch and plunge velocity. This result indicates that the NARMAX parameters 
explain the measured data well. Moreover, for every data set the standard deviation 
(STD) of each model parameter was computed at the 95 percent confidence level. These 
results showed that the STDs did not contain zero and suggest that the estimated models 
are accurate. A model parameter whose STD encompasses zero may indicate a spurious 
model term and, hence, should be reformulated (ref. 34).
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Discussion 

NARMAX Representation of Pitch-Plunge Velocity Dynamics 

The theoretical results demonstrate that the nonlinear difference equation description 
for the pitch-plunge models are NARMAX models. Simulation results show that the 
NARMAX models match the continuous-time response well. These results suggest that 
parametric nonlinear model forms such as the NARMAX class can be used for modeling 
aerospace systems.

Nonlinear models have the advantage of covering a wider range of system dynamics 
than linear models, which could allow for slower envelope expansion. Using nonlinear 
models to characterize aeroelastic phenomena can provide significant time and cost 
savings for test and development of aerospace vehicles. Moreover, the discrete nonlinear 
models of pitch-plunge provide excellent predictions that could be used for control 
synthesis and statistical studies of NARMAX coefficients and may be of direct relevance 
for health monitoring of aerostructures.

Discrete-Time Parameter Estimation of Simulated Aeroelastic System 

Simulation studies previously described in the section titled “Analysis of NARMAX 
Model Parameters” showed that, for a NARMAX model representation, the mean of Monte 
Carlo estimates for NARMAX parameters matched the theoretical values well for all SNR 
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levels. However, estimates of some parameters (e.g., γ
10

) did not correspond well to 
theoretically computed values. As previously stated, lagged-error terms are difficult to 
identify accurately. Error terms represent a stochastic process that cannot be measured. 
This stochastic process is approximated by a deterministic signal of prediction errors that 
is only an (poor) estimate of the noise (refs. 22 and 28).

Identification of Experimental Aeroelastic Data 

High %QF cross-validation fits obtained for parameter estimates using NARMAX 
identification methods (fig. 6) show that the identified parameters explain the experimental 
data well. Using %QF alone as an indicator of model goodness may lead to incorrect 
interpretations of model validity. However, in many cases for nonlinear models, %QF may 
be the only indicator that is readily available.

A model validation technique for nonlinear systems, using higher order correlations, 
was developed by Billings and Voon (refs. 35 and 36). Korenberg and Hunter (ref. 37) 
showed that this model validation technique fails for simple cases. Therefore, this 
approach was not implemented in favor of using the %QF alone as an indicator of model 
goodness.

When studying aeroelastic systems, assuming that the exact model order and 
structure are well-known a priori may not be practical. In aerospace systems analysis, 
one of the main objectives is not only to estimate system parameters but also to gain 
insight into the structure of the underlying system. Investigation in a future study would 
be worthwhile to determine the result of allowing NARMAX structure detection methods 
(refs. 34 and 38–40) to analyze the data to find the best structure from the data set. 
This may then indicate deficiencies in the analytical model and could lead to improved 
modeling strategies.

Conclusions 

Theoretical results demonstrate that the nonlinear difference equation description for 
the pitch-plunge model is a NARMAX model. Simulation results show that the NARMAX 
model matches the continuous-time response well. Moreover, this report contributes to the 
understanding of the use of parametric identification techniques for modeling of nonlinear 
aerospace systems. The main point here is that the NARMAX form is clearly amenable to 
the study of a wide range of aerospace systems and could be computationally efficient. 
NARMAX modeling and identification techniques should be examined further especially 
in the case of severe nonlinear behavior.



23

REFERENCES

Lee, B. H. K., S. J. Price, and Y. S. Wong, “Nonlinear aeroelastic analysis of airfoils: 
bifurcation and chaos,” Progress in Aerospace Sciences, vol. 35, no. 3, pp. 205–334, 
Elsevier, Amsterdam, 1999.

Bunton, Robert W., and Charles M. Denegri, Jr., “Limit Cycle Oscillation Characteristics 
of Fighter Aircraft,” Journal of Aircraft, vol. 37, no. 5, pp. 916–918, AIAA, New York, 
2000.

Chen, P. C., D. Sarhaddi, and D. D. Liu, “Limit-Cycle-Oscillation Studies of a Fighter 
with External Stores,” AIAA-1998-1727, AIAA, New York, 1998.

Denegri, Charles M., Jr., “Limit Cycle Oscillation Flight Test Results of a Fighter with 
External Stores,” Journal of Aircraft, vol. 37, no. 5, pp. 761–769, AIAA, New York, 
2000.

Greblicki, Wlodzimierz, and Miroslaw Pawlak, “Nonparametric identification of a 
cascade nonlinear time series system,” Signal Processing, vol. 22, issue 1, pp. 61–75, 
Elsevier, Amsterdam, 1991.

Kosut, Robert L., Ming K. Lau, and Stephen P. Boyd, “Set-Membership Identification 
of Systems with Parametric and Nonparametric Uncertainty,” IEEE Transactions on 
Automatic Control, vol. 37, no. 7, pp. 929–941, IEEE, New York, 1992.

Masri, S. F., and T. K. Caughey, “A Nonparametric Identification Technique for Nonlinear 
Dynamic Problems,” Journal of Applied Mechanics, vol. 46, pp. 433–447, ASME, New 
York, 1979.

Lind, Rick, Richard J. Prazenica, and Martin J. Brenner, “Estimating Nonlinearity 
Using Volterra Kernels in Feedback with Linear Models,” Nonlinear Dynamics, vol. 39, 
nos. 1–2, pp. 3–23, Springer, The Netherlands, 2005.

Leontaritis, I. J., and S. A. Billings, “Input-output parametric models for non-linear 
systems Part I: deterministic non-linear systems,” International Journal of Control, 
vol. 41, no. 2, pp. 303–328, Taylor & Francis, London, 1985.

Leontaritis, I. J., and S. A. Billings, “Input-output parametric models for non-linear 
systems Part II: stochastic non-linear systems,” International Journal of Control, 
vol. 41, no. 2, pp. 329–344, Taylor & Francis, London, 1985.

Billings, S. A., and S. Chen, “Extended model set, global data and threshold model 
identification of severely non-linear systems,” International Journal of Control, vol. 50, 
no. 5, pp. 1897–1923, Taylor & Francis, London, 1989.

1.

2.

�.

4.

5.

6.

7.

8.

9.

10.

11.



24

Chen, S., and S. A. Billings, “Representations of non-linear systems: the NARMAX 
model,” International Journal of Control, vol. 49, no. 3, pp. 1013–1032, Taylor & 
Francis, London, 1989.

Chen, S., S. A. Billings, C. F. N. Cowan, and P. M. Grant, “Practical identification 
of NARMAX models using radial basis functions,” International Journal of Control, 
vol. 52, no. 6, pp. 1327–1350, Taylor & Francis, London, 1990.

Kukreja, S. L., H. L. Galiana, and R. E. Kearney, “NARMAX representation and 
identification of ankle dynamics,” IEEE Transactions on Biomedical Engineering, 
vol. 50, issue 1, pp. 70–81, IEEE, New York, 2003.

O’Neil, Todd, and Thomas W. Strganac, “Nonlinear Aeroelastic Response–Analyses 
and Experiments,” AIAA-1996-0014, AIAA, New York, 1996.

O’Neil, Todd, Heather Gilliatt, and Thomas W. Strganac, “Investigations of Aeroelastic 
Response for a System with Continuous Structural Nonlinearities,” AIAA-1996-1390, 
AIAA, New York, 1996.

Dowell, Earl H., “Nonlinear Aeroelasticity,” AIAA-1990-1031, AIAA/ASME/ASCE/
AHS/ASC 31st Structures, Structural Dynamics, and Materials Conference, Part 3, A 
Collection of Technical Papers, pp. 1497–1509, AIAA, New York, 1990.

Tang, D. M., and E. H. Dowell, “Flutter and Stall Response of a Helicopter Blade with 
Structural Nonlinearity,” Journal of Aircraft, vol. 29, no. 5, pp. 953–960, AIAA, New 
York, 1992.

Yang, Z. C., and L. C. Zhao, “Analysis of Limit Cycle Flutter of an Airfoil in Incompressible 
Flow,” Journal of Sound and Vibration, vol. 123, issue 1, pp. 1–13, Elsevier, Amsterdam, 
1988.

Zhao, L. C., and Z. C. Yang, “Chaotic Motions of an Airfoil with Non-linear Stiffness in 
Incompressible Flow,” Journal of Sound and Vibration, vol. 138, issue 2, pp. 245–254, 
Elsevier, Amsterdam, 1990.

Franklin, Gene F., J. David Powell, and Abbas Emami-Naeini, Feedback Control of 
Dynamic Systems, 4th ed., Prentice Hall, Upper Saddle River, New Jersey, 2002.

Ljung, Lennart, System Identification: Theory for the User, 2nd ed., Prentice Hall, 
Upper Saddle River, New Jersey, 1999.

Åström, Karl J., and Björn Wittenmark, Computer-Controlled Systems: Theory and 
Design, 3rd ed., Prentice Hall, Upper Saddle River, New Jersey, 1996.

Panuska, V., “A Stochastic Approximation Method for Identification of Linear Systems 
Using Adaptive Filtering,” Proceedings of the 1968 Joint Automatic Control Conference 
of the American Automatic Control Council, pp. 1014–1021, IEEE, New York, 1968.

12.

1�.

14.

15.

16.

17.

18.

19.

20.

21.

22.

2�.

24.



25

Panuska, V., “An adaptive recursive-least-squares identification algorithm,” Proceedings 
of the 1969 IEEE Conference on Decision & Control including the 8th Symposium on 
Adaptive Processes, vol. 8, pt. 1, p. 65, IEEE, New York, 1969.

Young, Peter C., “The Use of Linear Regression and Related Procedures for the 
Identification of Dynamic Processes,” IEEE Proceedings of Seventh Symposium on 
Adaptive Processes, pp. 5-c-1–5-c-5, IEEE, New York, 1968.

Billings, S. A., and W. S. F. Voon, “Least squares parameter estimation algorithms for 
non-linear systems,” International Journal of Systems Science, vol. 15, no. 6, pp. 601–
615, Taylor & Francis, London, 1984.

Goodwin, Graham C., and Robert L. Payne, Dynamic System Identification: Experiment 
Design and Data Analysis, Mathematics in Science and Engineering book series, 
vol. 136, Academic Press, New York, 1977.

Walter, Éric, and Luc Pronzato, Identification of Parametric Models from Experimental 
Data, Springer, New York, 1997.

Söderström, Torsten, and Petre Stoica, System Identification, Prentice Hall, New York, 
1989.

Stoica, Petre, and Torsten Söderström, “Asymptotic behaviour of some bootstrap 
estimators,” International Journal of Control, vol. 33, no. 3, pp. 433–454, Taylor & 
Francis, London, 1981.

Shao, Jun, “Linear Model Selection by Cross-Validation,” Journal of the American 
Statistical Association, vol. 88, no. 422, pp. 486–494, American Statistical Association, 
New York, 1993.

Kurdila, Andrew J., Richard J. Prazenica,  Othon Rediniotis, and Thomas Strganac, 
“Multiresolution Methods for Reduced-Order Models for Dynamical Systems,” Journal 
of Guidance, Control, and Dynamics, vol. 24, no. 2, pp. 193–200, AIAA, New York, 
2001.

Kukreja, Sunil L., Henrietta L. Galiana, and Robert E. Kearney, “A bootstrap method 
for structure detection of NARMAX models,” International Journal of Control, vol. 77, 
no. 2, pp. 132–143, Taylor & Francis, London, 2004.

Billings, S. A., and W. S. F. Voon, “Structure detection and model validity tests in 
the identification of nonlinear systems,” IEE Proceedings, Part D–Control Theory and 
Applications, vol. 130, no. 4, pp. 193–199, IEE, Stevanage, UK, 1983.

Billings, S. A., and W. S. F. Voon, “Correlation based model validity tests for non-linear 
models,” International Journal of Control, vol. 44, no. 1, pp. 235–244, Taylor & Francis, 
London, 1986.

25.

26.

27.

28.

29.

�0.

�1.

�2.

��.

�4.

�5.

�6.



26

Korenberg, Michael J., and Ian W. Hunter, “The Identification of Nonlinear Biological 
Systems: Wiener Kernel Approaches,” Annals of Biomedical Engineering, vol. 18, 
pp. 629–654, Springer, The Netherlands, 1990.

Korenberg, Michael, “Orthogonal Identification of Nonlinear Difference Equation 
Models,” Conference Proceedings of the 28th Midwest Symposium on Circuits and 
Systems, vol. 1, pp. 90–95, University of Louisville, 1985.

Korenberg, M., S. A. Billings, Y. P. Liu, and P. J. McIlroy, “Orthogonal parameter 
estimation algorithm for non-linear stochastic systems,” International Journal of 
Control, vol. 48, no. 1, pp. 193–210, Taylor & Francis, London, 1988.

Kukreja, Sunil L., Robert E. Kearney, and Henrietta L. Galiana, “A Bootstrap Method 
for NARMAX Model Order Selection,” Modelling and Control in Biomedical Systems 
2000, a Proceedings volume from the 4th IFAC Symposium, pp. 329–332, Pergamon, 
New York, 2000.

�7.

�8.

�9.

40.



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

1.  REPORT DATE (DD-MM-YYYY)
01-11-2008

2.  REPORT TYPE 
Technical Memorandum

 4.  TITLE AND SUBTITLE
Nonlinear System Identification for Aeroelastic Systems
with Application to Experimental Data

5a. CONTRACT NUMBER

 6.  AUTHOR(S)
Dr. Sunil L. Kukreja

 7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Dryden Flight Research Center
P.O. Box 273
Edwards, California 93523-0273

 9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
     REPORT NUMBER

H-2887

10. SPONSORING/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES
Kukreja, NASA Dryden Flight Research Center.  Also presented as AIAA-2008-7392 at the AIAA Guidance, Navigation and Control Conference and 
Exhibit, Honolulu, Hawaii, August 18-21, 2008.  An electronic version can be found at http://dtrs.dfrc.nasa.gov or  http://ntrs.nasa.gov/search.jsp.

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified--Unlimited
Subject Category   31                                      Availability: NASA CASI (301) 621-0390      Distribution: Standard

19b. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT
Representation and identification of a nonlinear aeroelastic pitch-plunge system as a model of the Nonlinear 
AutoRegressive, Moving Average eXogenous (NARMAX) class is considered. A nonlinear difference equation describing 
this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX 
models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of 
experimental conditions. Simulation results show that (1) the outputs of the NARMAX model closely match those 
generated using continuous-time methods, and (2) NARMAX identification methods applied to aeroelastic dynamics 
provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge 
dynamics data gives a high percent fit for cross-validated data.
!!

15. SUBJECT TERMS
Aeroelasticity, Modeling, NARMAX, Nonlinear system identification, Pitch-plunge model

18. NUMBER
      OF 
      PAGES

31
19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

a.  REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF 
      ABSTRACT

UU

Prescribed by ANSI Std. Z39-18
Standard Form 298 (Rev. 8-98)

3.  DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

11. SPONSORING/MONITORING
      REPORT NUMBER

NASA/TM-2008-214641

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing 
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or 
any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, 
Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302. Respondents should be aware 
that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a 
currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.


	COVER PAGE
	TITLE PAGE
	ABSTRACT
	NOMENCLATURE
	INTRODUCTION
	NARMAX MODEL
	NONLINEAR PITCH-PLUNGE MODEL OF AIRCRAFT DYNAMICS
	Discrete-Domain Approximations

	THEORETICAL ANALYSIS
	VALIDATION OF NARMAX PITCH-PLUNGE MODEL
	Output Accuracy
	Simulation Result

	NARMAX IDENTIFICATION OF PITCH-PLUNGE MODEL
	Analysis of NARMAX Model Parameters
	Identification Results of Simulated Model

	IDENTIFICATION OF EXPERIMENTAL PITCH-PLUNGE DATA
	Apparatus
	Procedures
	Results

	DISCUSSION
	NARMAX Representation of Pitch-Plunge Velocity Dynamics
	Discrete-Time Parameter Estimation of Simulated Aeroelastic System
	Identification of Experimental Aeroelastic Data

	CONCLUSIONS
	REFERENCES
	REPORT DOCUMENTATION PAGE



